| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384 |
- from flask import Flask, render_template, request, redirect, url_for
- import pandas as pd
- from werkzeug.utils import secure_filename
- import os
- from collections import Counter
- import tushare as ts
- # 初始化Tushare和Flask应用
- pro = ts.pro_api('a9b83bc559587ad8b391c631b5e4eb93bd304f918c8700a81b13604f')
- app = Flask(__name__)
- app.config['UPLOAD_FOLDER'] = 'uploads/'
- # 创建 uploads 文件夹,如果不存在
- if not os.path.exists(app.config['UPLOAD_FOLDER']):
- os.makedirs(app.config['UPLOAD_FOLDER'])
- # 用户提供的函数
- def tsdate(date):
- return date.replace('-', '')
- def tscode(code):
- return code + '.SH' if code[0] == '6' else code + '.SZ'
- def get_trade_date_after(start_date, n):
- start_date = start_date.replace('-', '')
- cal = pro.trade_cal(exchange='SSE', start_date=start_date)
- cal = cal[cal['is_open'] == 1]
- trading_days = cal[cal['cal_date'] >= start_date]
- trading_days = trading_days['cal_date'].tolist()[::-1]
- return trading_days[n]
- def extract_code_date(file_path):
- df = pd.read_csv(file_path)
- code_date_df = df[['code', 'tradedate']].copy()
- code_date_df['code'] = code_date_df['code'].astype(str).str.zfill(6)
- result_list = code_date_df.values.tolist()
- return result_list
- def get_pct(code, start_date, end_date):
- daily_data = pro.daily(ts_code=tscode(code), start_date=tsdate(start_date), end_date=tsdate(end_date))
- daily_data.set_index('trade_date', inplace=True)
- daily_data.sort_index(inplace=True)
- pct = round((daily_data.iloc[-1]['close'] - daily_data.iloc[0]['close']) / daily_data.iloc[0]['close'] * 100, 2)
- return pct
- # 路由定义
- @app.route('/', methods=['GET', 'POST'])
- def index():
- if request.method == 'POST':
- file = request.files['file']
- if file:
- filename = secure_filename(file.filename)
- filepath = os.path.join(app.config['UPLOAD_FOLDER'], filename)
- file.save(filepath)
- # 读取CSV文件
- code_date_list = extract_code_date(filepath)
- pct_list = []
- up_down_flags = []
- for code, start_date in code_date_list:
- end_date = get_trade_date_after(start_date, 10)
- pct = get_pct(code, start_date, end_date)
- pct_list.append(pct)
- up_down_flags.append(1 if pct > 0 else 0)
- counter = Counter(up_down_flags)
- up_probability = counter[1] / len(up_down_flags) * 100
- df = pd.read_csv(filepath)
- df['code'] = df['code'].astype(str).str.zfill(6)
- df['10_days_pct'] = pct_list
- return render_template('index.html',
- tables=[df.to_html(classes='table table-striped')],
- titles=df.columns.values,
- up_probability=up_probability)
- return render_template('index.html')
- if __name__ == '__main__':
- app.run(debug=True)
|